当前位置:首页 > 学院概况 > 师资队伍

刘冰艺

发布时间:2018-09-11     字体:[增加 减小]


个人信息(PersonalInformation

   名:刘冰艺

出生年月:19907

   位:博士

职称/职位:教授,博士生导师,人工智能系主任,香港城市大学兼职研究员,挂职武汉市经开区教育局党委委员、副局长。

E-mailbyliu[at]whut.edu.cn

学术经历(AcademicBackground):

20149月至20183月,香港城市大学,计算机科学与工程系,获博士学位。导师:汪建平教授,计算学院院长,IEEEFellow

20169月至20179月,美国纽约州立大学,计算机科学系,联合培养博士。导师:乔春明教授, IEEEFellow

20119月至201712月,武汉大学,计算机学院,硕博连读获得博士学位。导师:吴黎兵教授。

研究方向(ResearchInterests:智能网联汽车、自动驾驶、强化学习、车联网、边缘智能、无线网络和智能交通。

主要成果简述(BriefIntroduction):

计算机与人工智能学院特任教授/博导,入选湖北省高层次人才计划,入选CCF智能汽车分会青年激励计划,中国通信学会第一届车联网委员会委员,中国计算机学会智能汽车分会执委,CCF YOCSEF武汉AC委员,CCF/IEEE/ACM会员。

以第一或者通讯作者在IEEE/ACM Trans.CCF推荐A/B类,SCI一区Top等权威期刊会议上发表论文50余篇(IEEEJSAC,IEEE TMCIEEE INFOCOM等),以第一或通讯作者4次获得IEEE等国内外权威会议最佳论文奖(IEEE SmartCity, CIVS等)及杰出论文奖(IEEE UIC等)。指导本科生及研究生多次获得国家级比赛一等奖等重要奖项(第十届中国研究生智能城市技术与创意大赛一等奖等),担任IEEE相关国际会议和国内权威会议程序委员会主席,论坛主席,大会组委会主席,受邀参加国内外重要会议特邀报告10余次,担任10余个权威会议的程序委员会成员和期刊编委及审稿人(INFOCOMCVPRICDCSTMCTITSTCE等)。

主持国家自然科学基金面上项目,国家自然科学基金青年项目,湖北省重点研发计划,海南省重点研发计划等国家级和省部级重点项目,及重大横向项目多项,是国家工信部车联网关键技术创新和应用平台主要负责人,海南省首批双百团队“物流区块链与车联网关键技术”主要负责人,教育部深度学习课程群虚拟教研室智能系统应用课程负责人,指导博士生获批中国科协青年人才托举博士生专项计划,参与车联网相关通信标准和国家环境部基于V2X节能减排方法学的制定,授权和申请专利15余项,参与和推动了多项智能网联汽车和智慧交通项目在武汉,重庆,香港等地应用和落地。

招生信息:

招收计算机、数学、车辆、电子信息等相关学科博士、硕士研究生,鼓励本科生提前进组学习交流,参与竞赛及科研,对于优秀的研究生,生活科研津贴从优,团队和美国纽约州立大学、香港城市大学、武汉大学等国内外知名高校,以及中国电信,阿里,东航等知名企业保持紧密合作,并提供实习,合作交流,读博深造机会。

部分主持及负责项目(Selected Projects):

[1] 国家自然科学基金面上项目,基于雾计算的车联网自适应组网和可靠通信关键技术研究,2022-2025

[2] 国家自然科学基金青年基金项目,面向智能交通的协同驾驶系统可靠高效通信技术研究,2019-2021

[3] 湖北省重点研发计划,面向车联网边缘智能的通信切换与服务迁移连续性研究,2022-2024

[4] 国家工信部物联网关键技术与平台创新类项目,车联网关键技术创新和应用平台,2021-2024

[5] 海南省重点研发计划,基于车载雾计算的新能源汽车协同运营管控关键技术研究与应用, 2021-2023

[6] 国家教育部深度学习课程群虚拟教研室,智能系统应用课程负责人,2022-2024

[7] 海南省首批“双百”团队,物流区块链与车联网关键技术, 2020

[8] 武汉市曙光计划项目,基于雾计算的智能网联汽车数据传输技术, 2023-2025

[9] 重庆市自然科学基金面上项目,基于多主体强化学习的智能网联汽车环境感知和通信技术, 2021-2024

[10] 湖北省技术创新专项重大项目,智能网联汽车车载智能系统关键技术研究与应用, 2019 -2020

[11] 武汉市交通强国建设科技联合项目,智能网联环境下交叉口车路协同控制优化研究,2024-2026

[12] 企业委托重大横向项目,车路协同一体化系统应用与开发,2025-2027

部分论文发表(Selected Publications):

[1] Multi-Agent Attention Double Actor-Critic Framework for Intelligent Traffic Light Control in Urban Scenarios With Hybrid Traffic, IEEE Transactions on Mobile Computing (TMC), 2024. (CCF A)

[2] Efficient AGV Scheduling in Warehouses via Hierarchical Transformer Reinforcement Learning,IEEE Journal on Selected Areas in Communications (JSAC), 2025. (CCF A)

[3] Enduring, Efficient and Robust Trajectory Prediction Attack in AutonomousDriving via Optimization-Driven Multi-Frame Perturbation Framework, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2025. (CCF A)

[4] Edge Intelligence Enabled Data Transmission in IoV:Integrating Link Optimization and Packet Routing, ACM Transcations on Sensor Networks (TOSN), 2025.(CCF B)

[5] MATLIT: MAT-Based Cooperative Reinforcement Learning for Urban Traffic Signal Control, IEEE Transactions on Intelligent Transportation Systems (TITS), 2025.(SCI一区)

[6] Secure Federated Learning for Cloud-Fog Automation: Vulnerabilities, Challenges, Solutions, and Future Directions,IEEE Transactions on Industrial Informatics  (TII), 2025. (SCI一区)

[7] An Efficient Message Dissemination Scheme for Cooperative Drivings via Cooperative Hierarchical Attention Reinforcement Learning, IEEE Transactions on Mobile Computing (TMC), 2023. (CCF A)

[8] Double Graph Attention Actor-Critic Framework for Urban Bus-Pooling System,IEEE Transactions on Intelligent Transportation Systems (TITS), 2023. (SCI一区)

[9] Towards Lightweight Traffic Forecasting in RDMANetworks: Design and Application, INFOCOM, 2025. (CCF A)

[10] Distributed Convex Relaxation for Heterogeneous Task Replication in Mobile Edge Computing, IEEE Transactions on Mobile Computing (TMC), 2022. (CCF A)

[11] A Bargaining-based Approach for Feature Tradingin Vertical Federated Learning, IEEE International Conference on Data Engineering (ICDE), 2025. (CCF A)

[12] CoPEFT: Fast Adaptation Framework for Multi-Agent Collaborative Perception with Parameter-Efficient Fine-Tuning,AAAI, 2025. (CCF A)

[13] CPA-MAC: A Collision Prediction and Avoidance MAC for Safety Message Dissemination in MEC-Assisted VANETs. IEEE Transactions on Network Science and Engineering (TNSE), 2021.(SCI一区)

[14] AnInfrastructure-Assisted Message Dissemination for Supporting Heterogeneous Driving Patterns. IEEE Transactions on Intelligent Transportation Systems (TITS), 2017. (SCI一区)

[15] Collaborative Intelligence Enabled Routing in Green IoV: A Grid and Vehicle Density Prediction Based Protocol," in IEEE Transactions on Green Communications and Networking (TGCN), 2022. (SCI一区)

[16] A Novel V2V-based Temporary Warning Network for Safety Message Dissemination in Urban Environments, IEEE Internet of Things Journal (IoTJ),2022. (SCI一区)

[17] A Joint Control-Communication Design for Reliable Vehicle Platooning in Hybrid Traffic, IEEE Transactions on Vehicular Technology (TVT), 2017. (SCI一区)

[18] A region-based collaborative management scheme for dynamic clustering in green vanet, IEEE Transactions on Green Communications and Networking (TGCN), 2022. (SCI一区)

[19] Cooperative Multi-Agent Reinforcement Learning Framework for Edge Intelligence Empowered Traffic Light Control, IEEE Transactions on Consumer Electronics(TCE), 2024. (SCI一区)

[20] Leveraging CAVs to Improve Traffic Efficiency: An MARL-Based Approach, ICDCS, 2024. (CCF B)

[21] An Efficient Message Dissemination Scheme for Cooperative Drivings via Multi-Agent Hierarchical Attention Reinforcement Learning, ICDCS, 2021. (CCF B)

[22] Multi-Agent Reinforcement Learning Based Resource Allocation for Efficient Message Dissemination in C-V2X Networks, IWQOS, 2024. (CCF B)

[23] Message dissemination scheduling for multiple cooperative drivings, INFOCOM, 2017. (CCF A)